Rule the streets with Kawasaki’s throwback to the retro-classic bike, the 2019 Kawasaki Z900RS CAFE motorcycle. This neo-retro Z brings modern technology like LED headlights and a multi-function LCD display together with a timeless design. Capture the spirit of 1973 with the café-racer style front cowl and the enthralling sound of the 948cc engine. With sophisticated features like an Assist and Slipper clutch and horizontal back-link suspension, cruise the boulevard or head to the canyons with this timeless beauty.
Take it for a ride todaySudden over-application of the brakes, or braking on low-grip surfaces (surfaces with a low coefficient of friction) such as wet asphalt or manhole covers, may cause a motorcycle's wheel(s) to lock up and slip.
Developed and tested through Kawasaki Factory racing, the Assist & Slipper Clutch utilizes two types of cams. An assist cam and a slipper cam enable the Assist & Slipper Clutch to function in two different ways, with the clutch hub working together or apart from the operating plate. Under normal operat
Modern sportbikes often use large-bore throttle bodies to generate high levels of power. However, with large-diameter throttles, when a rider suddenly opens the throttle, the unrestricted torque response is anythin
Using high-precision electronics for engine management, Kawasaki models can achieve a high level of fuel efficiency. However, fuel consumption is greatly affected by throttle use, gear selection, and other elemen
ERGO-FIT is an interface system that allows a wide range of riders to feel at one with their machine.
Horizontal Back-link Rear Suspension arranges its shock unit horizontally, greatly contributing to efficient use of space and mass centralization.
KTRC (Kawasaki TRaction Control), Kawasaki's advanced traction control system, offers a selection of modes to suit a wide range of riding situations, from sport riding to touring.
Sound tuning enhances the exhilaration a Kawasaki motorcycle offers by complementing the sensations the rider feels with a carefully crafted auditory component.
4-stroke, 4-cylinder, DOHC, 16-valve, liquid-cooled
948cc
73.4 x 56.0mm
10.8:1
DFI® with Keihin 36mm throttle bodies
TCBI with electronic advance
6-speed, return shift
Inverted telescopic fork with (10-way) adjustable compression and rebound (12-way) damping, spring preload/4.7
Horizontal back-link swingarm with stepless adjustable rebound damping and spring preload/5.5 in
120/70 ZR17
180/55 ZR17
25.0°/3.9 in
5.1 in
57.9 in
82.7 in
33.3 in
46.9 in
32.3 in
474.1 lb**
4.5 gal
72.3 lb-ft @ 6,500 rpm
Sealed chain
Tubular, diamond
Vintage Lime Green
12, 24, 36 or 48 months
Dual disc ABS
Single disc ABS
12 Month Limited Warranty
**Curb weight includes all necessary materials and fluids to operate correctly, full tank of fuel (more than 90 percent capacity) and tool kit (if supplied).
Specifications subject to change
KAWASAKI CARES: Always wear a helmet, eye protection, and proper apparel. Never ride under the influence of drugs or alcohol. Read Owner’s Manual and all on-product warnings. Professional rider shown on a closed course. ©2019 Kawasaki Motors Corp., U.S.A.
Sudden over-application of the brakes, or braking on low-grip surfaces (surfaces with a low coefficient of friction) such as wet asphalt or manhole covers, may cause a motorcycle's wheel(s) to lock up and slip. ABS was developed to prevent such incidents. Kawasaki ABS systems are controlled by highly precise and extremely reliable programming formulated thorough testing of numerous riding situations. By ensuring stable braking performance, they offer rider reassurance for even greater riding enjoyment.
To meet the special requirements of certain riders, specialized ABS systems are also available. For example, KIBS (Kawasaki Intelligent anti-lock Brake System) is a precision-tuned brake system designed specifically for supersport models, enabling sport riding to be enjoyed by a wider range of riders. By linking the front and rear brakes, K-ACT (Kawasaki Advanced Coactive-braking Technology) ABS provides the confidence to enjoy touring on heavyweight models. Kawasaki is continually working on the development of other advanced ABS systems.
Developed and tested through Kawasaki Factory racing, the Assist & Slipper Clutch utilizes two types of cams. An assist cam and a slipper cam enable the Assist & Slipper Clutch to function in two different ways, with the clutch hub working together or apart from the operating plate.
Under normal operation, the assist cam functions as a self-servo mechanism, pulling the clutch hub and operating plate together to compress the clutch plates. This allows the total clutch-spring load to be reduced, resulting in a lighter clutch feel at the lever.
When excessive engine braking occurs – as a result of quick downshifts (or an accidental downshift) – the slipper cam comes into play, forcing the clutch hub and operating plate apart. This relieves pressure on the clutch plates to reduce back-torque and help prevent the rear tire from hopping and skidding.
Modern sportbikes often use large-bore throttle bodies to generate high levels of power. However, with large-diameter throttles, when a rider suddenly twists the throttle, the unrestricted torque response is anything but gentle, and often more than the rider can handle. Dual throttle valve technology was designed to tame engine response while enabling high performance.
On fuel-injected models, throttle bodies generally have only one throttle valve per cylinder. On models with dual throttle valves, there are two per cylinder: in addition to the main valves, which are physically linked to the throttle grip and controlled by the rider, a second set of valves, controlled by the ECU, precisely regulates intake airflow to ensure a natural, linear response. With the air passing through the throttle bodies flowing smoothly, combustion efficiency is improved and power is increased.
Like other Kawasaki engine management technology, Dual Throttle Valves were designed with the philosophy of "following the rider's intention, while providing natural-feeling support." They are featured on many Kawasaki models.
Using high-precision electronics for engine management, Kawasaki models can achieve a high level of fuel efficiency. However, fuel consumption is greatly affected by throttle use, gear selection, and other elements under the rider's control. The Economical Riding Indicator is a function that signals when current riding conditions are consuming an optimally low amount of fuel. The system continuously monitors fuel consumption, regardless of vehicle speed, engine speed, throttle position and other riding conditions. When fuel consumption is low for a given speed (i.e., fuel efficiency is high), an "ECO" emblem appears on the LCD screen of the instrument panel. By riding so that the "ECO" mark remains on, fuel consumption can be minimized.
While effective vehicle speed and engine speed may vary by model, paying attention to conditions that cause the "ECO" mark to appear can help riders improve their fuel efficiency – a handy way to increase cruising range. Further, keeping fuel consumption low also helps minimize negative impact on the environment.
Proper fit is key for rider comfort and control. However, the ideal fit varies from rider to rider, depending on their physical dimensions and riding style.
ERGO-FIT is an interface system designed to allow riders to find their ideal riding position. Various points of the chassis interface (the handlebar, footpegs and seat, etc) can be adjusted through a combination of interchangeable parts and parts with adjustable positions. This enables a wide range of riders to find a riding position that offers both comfort and control. Feeling at one with their machine, they will be able to experience how Kawasaki machines are fun and rewarding to ride.
*Adjustable parts and their range of adjustability vary by model.
When comparing Kawasaki's traditional Uni-Trak® rear suspension, which mounts the shock unit vertically, with Horizontal Back-link rear suspension, the shock unit is almost horizontal. Kawasaki's original suspension arrangement places the shock unit very close to the bike's center of gravity, greatly contributing to mass centralization. And because there is no linkage or shock unit protruding beneath the swingarm, this frees up space for a larger exhaust pre-chamber (an exhaust expansion chamber situated just upstream of the silencer). With a larger pre-chamber, silencer volume can be reduced, and heavy exhaust components can be concentrated closer to the center of the bike, further contributing to mass centralization. The overall result is greatly improved handling.
Another benefit is that the shock unit is placed far away from exhaust heat. Because it is more difficult for exhaust heat to adversely affect suspension oil and gas pressure, suspension performance is more consistent. Horizontal Back-link Rear Suspension offers numerous secondary benefits like this.
KTRC, Kawasaki's advanced traction control system provides both enhanced sport riding performance and the peace of mind to negotiate slippery surfaces with confidence. Multiple rider-selectable modes (the number of modes varies by model) offer progressively greater levels of intrusion to suit the riding situation and rider preference.
Less intrusive modes maintain optimum traction during cornering. Designed with sport riding in mind, they facilitate acceleration out of corners by maximizing forward drive from the rear wheel. And because Kawasaki’s sophisticated software bases its dynamic analysis on the chassis’ orientation relative to the track surface (rather than relative to a horizontal plane), it is able to take into account corner camber, gradient, etc., and adapt accordingly.
In the more intrusive modes (and for some models, in any mode), when excessive wheel spin is detected, engine output is reduced to allow grip to be regained, effectively enabling riders to negotiate both short, slippery patches (train tracks or manhole covers) and extended stretches of bad roads (wet pavement, cobblestone, gravel) with confidence.
Models equipped with IMU incorporate chassis-orientation feedback to offer even more precise management.
Kawasaki has long had a reputation for building great-sounding bikes – a characteristic inherent in Kawasaki’s engine architecture – but it is only recently that effort has been put into crafting a specific auditory experience though careful sound tuning of either the intake or exhaust system.
Designed specifically to allow riders to enjoy their motorcycles aurally as well as physically, the carefully crafted auditory notes can be the key components of the street riding exhilaration offered by models that have benefited from sound tuning. Sound tuning can include conducting sound research, designing intake and exhaust system components based on acoustic test carried out in a sound room, and careful consideration of every detail of a system’s components to ensure a balance of performance and the desired sound.